If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+5=113
We move all terms to the left:
3k^2+5-(113)=0
We add all the numbers together, and all the variables
3k^2-108=0
a = 3; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·3·(-108)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*3}=\frac{-36}{6} =-6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*3}=\frac{36}{6} =6 $
| 43=h+33 | | 2x+13=48 | | -40x+5=x | | 8n+4-3n=5n+8 | | x-10+2=40+5 | | 7-9x^2=-76 | | 8w-15=67 | | 31-6j=37 | | 3x-5(x-3)=7+5x+1 | | 400=-10(1+4k | | F(x)+1=8x+4 | | b/4+36=45 | | 5n+6+(-7n=) | | 16+5f=1 | | 4u+10=3u | | 3.7^x=-2.8^x | | 2.3c+5.5=82.5 | | 9-(2y-3)=45 | | 25g-12=38 | | 12.50+2n=48.50 | | p16+1=2 | | 10m^2-8=32 | | 2(-5x+5)+18=4x | | 53+(-x)=44 | | -3(r+2)=72 | | 1+5/6a=-14 | | (6m)/7=39 | | 1=22-3j | | x+4+4x+6+5x=180 | | 3x^2+4x+12=0. | | -33=-11-9.5c | | 8y−9=31. |